17 research outputs found

    Topological and synchronicity effects in reaction efficiency

    Get PDF
    The role of dimensionality (Euclidean versus fractal), spatial extent, boundary effects and system topology on the efficiency of diffusion-reaction processes involving two simultaneously-diffusing reactants is analyzed. We present numerically-exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via application of the theory of finite Markov processes, and via Monte Carlo simulation. We conclude that for sufficiently large systems, the efficiency of diffusion-reaction processes involving two synchronously diffusing reactants relative to processes in which one reactant of a pair is anchored at some point in the reaction space is higher, and is enhanced the lower the dimensionality of the system. This differential efficiency becomes larger with increasing system size and, for periodic systems, its asymptotic value may depend on the parity of the lattice. Imposing confining boundaries on the system enhances the differential efficiency relative to the periodic case, while decreasing the absolute efficiencies of both two-walker and one walker plus trap processes. Analytic arguments are presented to provide a rationale for the results obtained. An analytical method based on the classical ruin problem is developed to compute the mean reaction time between two walkers undergoing a generalized random walk on a 1d lattice. At each time step, either both walkers diffuse simultaneously with probability p (synchronous event) or one of them diffuses while the other remains immobile with complementary probability (asynchronous event). Reaction takes place through same site occupation or position exchange. We study the influence of the degree of synchronicity p of the walkers and the lattice size N on the global reaction\u27s efficiency. For odd N, the purely synchronous case (p=1) is always the most effective one, while for even N, the encounter time is minimized by a combination of synchronous and asynchronous events. This new parity effect is fully confirmed by Monte Carlo simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the 1d continuum approximation valid for sufficiently large lattices predicts a monotonic increase of the efficiency as a function of p

    Tackling component interoperability in quantum chemistry software

    Get PDF
    The Common Component Architecture (CCA) offers an environment that allows scientific packages to dynamically interact with each other through components. Conceptually, a computation can be constructed with plugand- play components from any componentized scientific package; however, providing such plug-and-play components from scientific packages requires more than componentizing functions/subroutines of interest, especially for large-scale scientific packages with a long development history. In this paper, we present our efforts to construct components for the integral evaluation - a fundamental sub-problem of quantum chemistry computations - that conform to the CCA specification. The goal is to enable fine-grained interoperability between three quantum chemistry packages, GAMESS, NWChem, and MPQC, via CCA integral components. The structures of these packages are quite different and require different approaches to construct and exploit CCA components. We focus on one of the three packages, GAMESS, delineating the structure of the integral computation in GAMESS, followed by our approaches to its component development. Then we use GAMESS as the driver to interoperate with integral components from another package, MPQC, and discuss the possible solutions for interoperability problems along with preliminary results

    Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Full text link

    Transforming knowledge systems for life on Earth : Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.Peer reviewe

    Space telescope and optical reverberation mapping project. IV. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548

    Get PDF
    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for 60–70 days, starting 75 days after the first HST/ COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C IV and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Lyα was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with Eph > 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies >54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation
    corecore